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Free-forced interactions in developing meanders 
and suppression of free bars 

By M. TUBINO AND G. SEMINARA 
Istituto di Idraulica, UniversitB di Genova, Italy 

(Received 9 September 1988 and in revised form 18 May 1989) 

The coexistence of migrating alternate (free) bars, spontaneously developing in 
erodible channels as a result of an instability process, with steady point bars, forced 
by curvature in meandering reaches of rivers, is investigated theoretically. 

A perturbation expansion is set up in terms of two dimensionless small parameters, 
B and v respectively, describing free and forced perturbations. The effect of mixed 
interactions at  O ( v z d )  is found to be responsible for the damping and slowing down 
of free bars as channel curvature increases. The theory allows us to determine the 
threshold value of channel curvature above which free bars are suppressed as a 
function of meander wavenumber for given flow and sediment characteristics. The 
minimum channel sinuosity for free bar suppression is found to be associated with 
the resonant wavenumber range of Blondeaux & Seminara (1985). Theoretical 
predictions compare satisfactorily with experimental observations by Kinoshita & 
Miwa (1974). The theory also suggests that free bars may appear again in a more 
advanced stage of meander development in accordance with field observations by 
Kinoshita (1961). 

1. Introduction 
Under widely occurring circumstances flow in a straight channel with erodible 

bottom is unstable and large-scale migrating bedforms develop which are 
characterized by a sequence of steep consecutive diagonal fronts with deep pools at 
the downstream face and gentler riffles along the upstream face. These bedforms 
which are often displayed by straight reaches of rivers at very low stage are known 
in the literature as ‘alternate bars’ and will be called ‘free bars’ in the following in 
order to emphasize the spontaneous character of their development. The formation 
of free bars in straight channels was the subject of several investigations developed 
mainly in the seventies (see Colombini, Seminara & Tubino (1987) hereinafter 
referred to as CST). Besides the practical importance of the subject (the presence of 
free bars affects several aspects of fluvial engineering like navigation, bank 
protection, design of fluvial structures), motivation for the above studies came from 
the idea that free bars, giving rise to a sinuous migrating thalweg within the initially 
straight banks, might somehow evolve into meanders provided channel banks be also 
erodible. In other words the formation of alternate bars (bar instability) would imply 
incipient meandering. 

A different point of view was taken in the early eighties by Ikeda, Parker & Sawai 
(1981) who investigated the occurrence of a different type of instability, thereafter 
called ‘ bend instability ’, whereby planimetric perturbations of the channel axis may 
be destabilizing through the effect of bank erosion associated with secondary flow 
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induced by the formation of ‘forced bars’ due to a channel sinuosity, however small. 
The ‘bend’ mechanism was found to  exhibit maximum growth for values of the 
meander wavelength close to those characteristic of alternate bars, thus supporting 
the, as yet, vague idea that the formation of alternate bars might proceed into a 
planimetric instability leading to the development of a meandering channel with 
initial wavelength close to tha,t of alternate free bars. 

Various questions arise from the new perspective opened up by the latter 
important contribution. What is the relationship between ‘ bar’ and ‘bend ’ 
instabilities ? Since the timescale of the ‘bend ’ process is that  of bank erodibility the 
latter process appears to  be very slow compared with the development of free bars 
in the initially straight channel. Thus the ‘bend’ mechanism is likely to operate in 
a channel where free bars have already developed. What is then the influence of the 
previously formed free bars on the bend instability process ? In  other words how do 
migrating free bars, spontaneously developing, affect steady bars forced by 
curvature ? 

The former question was tackled by Blondeaux & Seminara (1985) (hereinafter 
referred to as BS) by means of a unified approach to bar-bend instability somewhat 
modified with respect to that of Ikeda et al. (1981). It turned out that forced 
perturbations selected by the ‘ bend ’ mechanism coincide with free perturbations 
characterized by nearly vanishing complex growth rate. I n  other words the bend 
process is essentially a quasi-resonance phenomenon triggered by channel sinuosity. 

The latter question is strongly related to its dual counterpart : how do forced bars 
induced by channel curvature affect free bars ? This problem, namely the coexistence 
of free and forced bars, was experimentally investigated by Kinoshita & Miwa (1974) 
in an interesting paper (hereinafter referred to  as KM) published in Japanese which 
remained unknown to us until recently when Professor Parker kindly provided us 
with a copy of an English translation of it. 

KM investigated the behaviour of free bars in a meandering channel formed ‘from 
straight segments a t  an angle a to  each other ’ such that the resulting wavelength was 
either equal to, or a fraction of, the free bars which had been previously found to 
form in a straight channel with identical flow and sediment characteristics. Two 
distinct flow regimes were experimentally detected depending on a falling above or 
below a threshold value a, in the range of 20-40”. For a < a, the train of free bars 
migrates even after reaching an apparently ‘naturally stable’ state where they are 
perfectly in phase with steady forced bars. For a > a, free bars cease migration. The 
latter state was detected from the disappearance of any bed oscillation in time at any 
given cross-section. The value of a, was found to  vary with channel meander 
wavelength Lg.  

KM’s results suggest that it is the interaction between migrating free and steady 
forced bars which is responsible for the suppression of the former perturbations. 
Furthermore for suppression to occur, the amplitude of forced bars, which increases 
with a,  must exceed a threshold value dependent on the meander wavelength. A 
theoretical interpretation of the process, which is also able to provide a predictive 
tool for engineering purposes, preliminarily requires a finite-amplitude representation 
of free bars. The latter was obtained in CST as a weakly nonlinear expansion in terms 
of a small parameter 8 defined as a measure of the distance from the marginal 
conditions for free bar formation. 

A finite-amplitude representation of forced bars is also required in terms of some 
dimensionless parameter v, to be precisely defined, measuring curvature effects. 

In the present paper we investigate the interaction of free and forced bars with the 
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aim of interpreting KM's results and show that, within some range of meander 
wavenumbers, a critical channel curvature exists for a given set of flow and sediment 
parameters such that free bars are indeed suppressed. This result also has some 
practical importance, suggesting how channels might be artificially corrected in 
order to  prevent the occurrence of free bars. 

Section 2 is devoted to the formulation of the mathematical model. I n  93 its 
solution is given as a perturbation expansion in terms of the free and forced small 
parameters ( E  and v respectively). An amplitude equation describing the development 
of free bars in meandering channels is derived in $4 and a discussion of its solution 
follows in $5.  Finally, 96 is devoted to some concluding remarks. 

The dual problem mentioned above, namely the influence of free bars initially 
formed in the originally straight channel on bend instability is outlined in Seminara 
& Tubino (1989). 

2. Formulation of the problem 
2.1. Geometrical preliminaries 

In order to describe flow and bed topography in curved channels it is convenient to 
adopt a curvilinear coordinate system such that the longitudinal coordinate follows 
the direction of the main flow. We define the channel axis in parametric form: 

with s* the curvilinear coordinate denoting the arclength (see figure 1). 
Let us assume the slope of the channel axis S = sin (0,) = -(dZ,*/ds*) to be 

constant and denote by ( 5 * ,  n*, z*) an orthogonal coordinate system such that n* is 
horizontal and z* is directed upward. The metric coefficients of the latter system are 
readilv obtained in the form: 

having employed the following relationships for the Cartesian coordinates (X*,  Y*, 
Z*)  in terms of (s*,n*,z*) 

z* = 2: +x* cos (6J, (2c) 

and having assumed that (r,*)-', the curvature of the channel axis, be positive when 
the centre of curvature lies along the negative n*-axis. 

If the slope of the channel is very small, as is typical of meandering rivers, the 
metric coefficients have the form (1) with cos (6,) set equal to 1. 

I n  the following we consider wide channels characterized by variable curvature 
and focus our attention on the case, vastly explored in the literature, when the 
channel axis is described by a so-called 'sine generated curve' (figure 2). Thus let us 
set : 

R* 
o= -* ro1(s) = e,+c.c. = exp(ih,s)+c.c., 
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FIGURE 1 .  Geometrical sketch of the coordinate system. 

L: 
FIGURE 2.  Sketch of the 'sine generated' meandering channel. 

where B* is the half-width of the channel, R,* is twice the radius of curvature at the 
bend apex, C.C. (or an overbar in the following) denotes the complex conjugate of a 
complex number, A, and s are the meander wavenumber and longitudinal coordinate 
both scaled by B*. Let the bed surface q* be defined by the following relationship 

d* = z*-q*(s* ,  n*) = 0. ( 5 )  

The plane locally tangent to the erodible boundary (figure 3) intersects the reference 
plane (s*, z*)  along a straight line. We denote by Q, the unit vector of the latter while 
G denotes the unit vector of the upward direction normal to the tangent plane. 
Finally let i, be the unit vector of the Cartesian axis lying on the tangent plane and 
orthogonal to i, and G. It is readily shown that (G, i,, i2) read : 
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S* 

'/ Tangent plane 

Bed surface 

FIGURE 3. Sketch of reference frame (u,* = particle velocity, u,* = average bottom stress). 

The above relationships will be employed in order to derive the Cartesian components 
of bed load after the direction of bed load transport along the tangent plane has been 
established. 

2.2. Governing equations 
We assume the channel width (2B*) to be large enough for sidewall effects to be 
negligible in the central region of the flow. In  other words we study the central region 
of the flow independently of the boundary layers adjacent to the sidewalls. By this 
scheme, which goes back to Engelund (1974), essentially the existence of two distinct 
lengthscales for transverse variation of flow quantities is assumed : the channel width 
which is relevant to the core region and the flow depth which is relevant to the wall 
region. Furthermore, the latter flow regions are assumed to interact weakly. The 
validity of this approach is discussed below. 

Furthermore, let us recall that  free bars contribute little to flow resistance a t  least 
for active gravel beds (Shen 1962 ; Bray 1979; Parker & Peterson 1980; Jaeggi 1984) : 
this implies that flow separation is not likely to be a crucial feature of free bar 
development. This premise and the work of CST then encourage one to assume an 
approximate representation of the flow field by means of a depth-averaged model, 
obviously unable to predict separation but still suitable to model the gross features 
of flow structure and bed topography. Such a model, though quite complicated, 
would still provide a manageable tool for investigating analytically complex 
phenomena involving nonlinear interactions of the type that will be discussed in the 
following. 
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However, a proper formulation of a two-dimensional model of flow and bed 
topography in curved channels requires to account appropriately for the ‘ dispersive ’ 
effects which arise as a consequence of performing the process of depth averaging. 
This was first pointed out by Kalkwijk & de Vriend (1980). Following ideas originally 
developed by Engelund (1974) it  is convenient to decompose the transverse 
component of velocity into a helical component with vanishing depth average and a 
depth-averaged component. Denoting the vertical distributions of these components 
by To(z) and rl(z), respectively, and the vertical distribution associated with the 
longitudinal component by Fl(z), the velocity field is expressed in the form 

u =Fl ( z ;Am)U(s ,n ) ,  w = v[To(z;h,)el+c.c.]U(s,n)+~,(z;h,) V(s ,n ) ,  (7a, b )  

where quantities are dimensionless as described below (see equation (13)), u is the 
curvature ratio defined in (4), (u, w )  and (U,  V )  are local and depth-averaged 
longitudinal and transverse components of velocity respectively. In order to include 
dispersive effects into the differential problem for the depth-averaged flow field we 
must assume a vertical structure for F,, r, and rl. In  the following we will employ 
expressions for F,, r,, rl as they emerge from the results ofa  fully three-dimensional 
linear model (Seminara & Tubino 1985, 1989). In  particular Fl and Tl are found to 
coincide with the uniform unperturbed velocity distribution uo(z). 

Thus equations (7a and b )  take the form: 

u = u,(z)U(s,n), w = u[ro(z;hm)e,+c.c.] U(s,n)+u,(z) V(s ,n) .  @a, b)  

The validity of the above decomposition is only approximate : indeed the vertical 
distributions associated with the depth-averaged components of u and w coincide 
with uo(z) only at a linear level and in the limit A, + 0 when the effect of longitudinal 
convection vanishes. It may be expected that the analysis will not be largely affected 
by the latter assumption since longitudinal convection is still accounted for in the 
depth-averaged model and is only neglected in the evaluation of the latter dispersive 
effects. The approximations associated with the decomposition (8a ,  b )  are the price 
to pay for reducing the complexity of the problem from that of a three-dimensional 
approach to that of a more tractable two-dimensional scheme. 

Also notice that the decomposition (Sa ,  b )  differs slightly from that originally 
proposed by Kalkwijk & de Vriend (1980) in that the longitudinal convection term 
is kept in the equation for T,(Z) (Seminara & Tubino 1985, 1989) as it is appropriate 
to the present context where the local curvature of the channel axis varies in the 
longitudinal direction. Mathematically this implies that the function To(z) is 
complex. Physically, the imaginary part of T,(z) describes the lag required for 
secondary flow to adapt to local curvature. This effect was accounted for by de 
Vriend (1981) by introducing a damping exponential function characterized by some 
‘relaxation length’ to describe the adaptation process of secondary flow. Though the 
latter procedure was not incorporated within the framework of a rational 
perturbation procedure it does not differ substantially from the present approach. 

Finally we point out that, denoting by /3 the width ratio of the channel (see (14b)), 
the approach employed herein whereby the sidewall boundary layers are ignored, is 
justified as the leading-order approximation of an expansion in powers of the small 
parameter F1, but requires some care. I n  fact, i t  has been shown by de Vriend (1981) 
that ignoring the sidewall boundary layers may affect the transverse redistribution 
of longitudinal momentum in a non-negligible way if the channel has steep sidewalls 
and is not shallow enough. More recently Johannesson & Parker (1989) have shown 
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by an appropriate procedure that the neglected term in the longitudinal momentum 
equation may be estimated to be O(a/PZ) smaller than the remaining ones. However, 
the coefficient u may attain values of a few hundreds. Thus, though neglecting the 
latter contribution is formally justified a t  leading order in the expansion in terms of 
(p-l), the approximation may be poor if p is not large enough, i.e. if the channel is 
not shallow enough. It should also be noticed that the above effect is less significant 
for rivers characterized by banks which are not very steep. 

By substituting from (8a ,  6) into the three-dimensional Reynolds equations 
written in the present coordinate system, performing depth integration and keeping 
only longitudinal and transverse shear stresses we find the following differential 
equations for the depth-averaged component of the flow field 

UU,,+VU,,+H,,+$--v9t(s) p 7 -  [(!; n “+VU,,  ) +UV ] 

1 1 
D 

-V~~(S)-(U~D),,-V~W,(S) , (9) 

where t is time, H is free-surface elevation, D is local depth, ( T ~ ,  7,) and (Qs, Q,) are 
bottom shear stresses and sediment flow rate components in the longitudinal and 
transverse directions. 

The variables have been made dimensionless in the form : 

(u*, w*,  U*, V*) = U ~ ( U ,  v ,  U,  V ) ,  (H*,D*,  q*, z * )  = D,*(k’iH,D, 7, x ) ,  (13a, 6 )  

(a*,  n*) = B*b, n), (7:, 7:) = pUo*2(7s, 7,), ( 1 3 ~  d )  

where ps and d,* are density and diameter of the sediment modelled as uniform, p is 
water density, g is gravitational acceleration, U,*, D,* and Fo are averaged speed, 
depth and Froude number for the uniform unperturbed flow. 

Furthermore Qo is the ratio between the scale of sediment discharge and the flow 
rate and p is width ratio defined as 

where p denotes sediment porosity. 
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The parameters k,, k, and k,, arising from the velocity decomposition (8a ,  b ) ,  have 
the following form: 
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They are plotted versus the non-dimensional sediment diameter d, = (d,*/D,*) for 
given values of the meander wavenumber A, in figure (4) where previous results by 
Kalkwijk & de Vriend (1980) and Engelund (1974) are also reported. 

Notice that the timescale B*/U,* is appropriate for the flow field. From (12) it 
appears that the morphological timescale is (Q,,)-l larger than the flow timescale. 
Since typical values of Q, are in the range 10-3-10-5 i t  follows that a quasi-steady 

- t - 
Real part 

I I 1 

FIQURE 4. The parameters Pk,, P2k,, P'k,, Pk4, are plotted versus the grain ratio d, for given values 
of the meander wavenumber A,(! = 30). -, A,  = 0;  ------, A,  = 0.2; -.-, A, = 0.4; ---, 
A, = 0.6; (a )  -, Kalkwijk &, de Vriend (1980); (d) -, Engelund (1974). 
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approach, whereby the flow field is assumed to adapt instantaneously to changes in 
the bottom configuration, is appropriate to  the present context. 

2.3. Boundary and integral conditions 
We ignore the sidewall boundary layers and require the channel walls to be 
impermeable bot,h to the flow and to the sediment. Thus we set 

V = Q , = O  ( n = f l ) .  (17% 6) 

Furthermore, we introduce appropriate integral conditions which express the 
requirements that flow discharge per unit width and averaged reach slope should not 
be altered by the development of perturbations. We write: 

1:1 UDdn = 2, ~ ~ m d s ~ ~ l  (FiH-D)dn = const. (18% b )  

2.4. Bottom stresses 
Having ignored separation we model the flow structure as slowly varying both in 
space and in time. This suggests that the bottom stress, modelled as aligned with the 
near bed velocity vector, be expressed in terms of a local friction coefficient C defined 
by the relationships 

7 = (7s,7n) = (u, T / ' + v U ( k , e , + c . c . ) ) ( ~ + T / ' ' ) a C ,  (19a) 

k4 = [3; 
In the following the local bed configuration will be assumed to be plane so that the 
following logarithmic formula will be employed for the friction coefficient : 

C-i = 6 + 2.5 In 

where the roughness parameter has been put equal to (2.5d:) after Engelund & 
Kansen (1  967). 

We point out explicitly that this procedure is equivalent to  assuming that the 
turbulent structure is in equilibrium with the local conditions, its spatial and velocity 
scales being the local values of depth and friction velocity respectively. This model 
is likely to be approximately adequate anywhere but in the weak separation zone. 

2.5.  Sediment transport 
For the sake of simplicity we assume sediment to be transported mainly as bed load. 
An extension to the case where a significant fraction of sediment is transported in 
suspension seems feasible though it may require a more refined (possibly fully three- 
dimensional) description of the flow field in the near bank regions where vertical 
velocities are significant. 

Sediment transport is assumed to be determined by local flow conditions, its 
direction deviating from the direction of average bottom stress under the action of 
gravity. In non-dimensional form we write (see figure 3) 

Q = Qr2,  '2,) = ( ~ 0 ~ 6 ,  sin 6 , O )  @, (21) 

where @ is the dimensionless equilibrium bed load function evaluated locally. 
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For relatively small values of 6 the experiments of Ikeda (1982) (see also Parker's 
( 1984) discussion) suggest the following formula 

r 
sin8 = sinX-7(FiH-D),,, 

P@ 
to  be appropriate, where x is the angle between bottom stress and the ?,-direction, 
6 is the local Shields parameter and r is a coefficient (presumably dependent on the 
particle Reynolds number) which various authors suggest taking as a constant 
ranging between 0.3 (Olesen 1983) and 0.54 (Engelund 1981). 

Equation (22) has been satisfactorily employed in most theoretical works on 
morphological evolution of cohesionless channels. Thus, it does not lack sub- 
stantiation. It is, however, appropriate to  point out its empirical character, though 
successful attempts to derive an expression of the same type as (22) have been 
proposed in the literature (Kikkawa, Ikeda & Kitagawa 1976; Engelund 1981; 
Parker & Andrews 1985), all of them are based on somewhat 'averaged' models of 
sediment grain dynamics along curved paths. Furthermore, (22) can only be 
appropriate within a linear context. An extension of (22) to the weakly nonlinear case 
would possibly be more appropriate to the present context. However, effects of 
nonlinearity of (22) have been found by the authors to be fairly weak such that i t  
does not seem to be convenient to further complicate the analysis given the 
uncertainty which is still present in the estimate of the coefficient r .  The latter has 
often been based on measurements of transverse bed slope in fully developed flow in 
constant curvature rectangular channels with erodible bed and on estimates of 
sin (x) based on theoretical models which are linear and apply to fairly wide channels. 
The latter conditions are only approximately satisfied in the experiments. 

The Meyer Peter Muller formula in the form given by Chien (1954) will be 
employed to evaluate @. Thus: 

@ = 8(0-0,,)t, OCr = 0.047. (23a7 b)  

Finally the longitudinal and transverse components of Q are derived from QT, and QTz 

using (6b ,  c). We find: 

having neglected fourth-order terms in the products between the longitudinal and 
transverse slopes. 

3. Expansion 
We now wish to determine the solution for flow and bed topography in a weakly 

meandering channel where free and forced bars are assumed to coexist. It will appear 
that  our solution will allow us to ascertain the conditions for the above coexistence 
to be possible. 

The 'weak meandering ' assumption is mathematically expressed in the form 

v 4  1.  (26) 

In  this respect it should be noticed that the critical values of the curvature ratio v 
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for free bar suppression observed by KM never exceeded 0.1, which suggests the 
suitability of the present approach to  interpret KMs experimental observations. Now 
the structure of flow and bed topography in weakly meandering shallow channels in 
the absence of free bars has been the subject of many investigations (see Seminara 
& Tubino (1989) for a review). Most of them take advantage of the weak effects of 
curvature by expanding the solution for (U,  V ,  H ,  D )  far from the banks in powers of 
v in the following typical form given for U :  

U = 1 + v[el U,(n) + c.c.] + v2{[ez U z ( n )  + c.c.] + U,(n)}+ O(v3) .  (27 ) 
\ 

Y 
I 

forced response 

The part of solution (27) representing the perturbation with respect to  the uniform 
flow will be referred to in the following as the ‘forced response’ of the channel. Its 
linear part is essentially the steady ‘forced bar’ solution derived in BS. The O(v2)  
terms arise from nonlinear interactions and consist of a second harmonic in the 
longitudinal direction (term proportional to U,) and a distortion of the basic uniform 
flow (term proportional to Uo) .  

On the other hand if channel curvature is ignored and the channel is assumed to 
be wide enough for its width ratio P to exceed the critical value P, below which free 
bars are damped, an instability process occurs which leads to the development of 
large-scale migrating perturbations called alternate (or free) bars. Linear stability of 
free bars has been investigated in the seventies in an increasingly refined fashion 
starting from the work of Callander (1969). Such a theory allows one to predict : 

( i )  the dependence of the critical width ratio Pc on unperturbed Shields stress 8, 
and the grain roughness d, ; 

(ii) the wavenumber hc of t’he bar characterized by maximum growth rate, i.e. the 
most suitable candidate to occur in practice ; 

(iii) the angular frequency w, of the fastest growing perturbation. 
Thus the structure of free bar perturbations predicted by linear theory is given in 

the form (U ,  V , H , D )  ccexp(Qt) ( u ~ S , , ~ , C , , ~ , S , , ~ , S , ) E , + ~ . ~ . ,  (28) 

X,(n) = sin (+mnx), C,(n) = cos ( h n n )  (m = 1 ’ 2 , .  . .) (29% 6 )  

Ei=exp[ji(hs-wt)] (j= 1,2 ,  ...), (294  

where (u,, v,, h,,  d,) are’infinitesimal amplitudes, SZ is the bar growth rate (vanishing 
a t  critical conditions) and the following notations are employed 

where the dimensionless bar wavenumber h and angular frequency w are scaled by 
( l /B*)  and (U,*/B*) respectively. 

The linear dispersion relationship obtained from linear theory is of the type: 

Q = Q2(h,w,P;8,,dsf. (30) 
This allows the predictions (i), (ii) and (iii). 

The indefinite growth predicted by linear theory for ,8 > P, (supercritical 
conditions) is inhibited by nonlinear effects which give rise to a supercritical 
bifurcation. This was shown by the weakly nonlinear theory of CST. In the latter 
work the nonlinear development of the linear solution (28) was followed for values of 

close enough to the critical value P,. Having defined the small parameter B in the 

it was shown that in such a weakly nonlinear regime: 
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(i)  the linear growth rate 52 is O(E), i.e. it can be written as (Q, E )  with Ql - O(1) ; 
(ii) the growth of perturbations is described by the slow time variable 

T = et, (32) 
such that a characteristic amplitude or bar perturbation is A ( T ) ;  

(iii) as T+-co, A ( T )  tends to exp ( Q I T )  in accordance with linear theory, 
whereas as T +  co it is found that A tends to an equilibrium value A ,  asymptotically 
reached. 

The structure of free bars in this weakly nonlinear regime can be inferred from the 
following expansion for U :  

u= 1 iuniform flow 1 
where El and E, are given by (29c) with h and w replaced by A, and w,. 

The order of magnitude of the fundamental perturbations is found to be el from a 
classical argument of hydrodynamic stability whereby secular terms originated by 
nonlinear interactions a t  third order must be prevented (see CST, p. 220). It appears 
from (33) that  nonlinearity gives rise a t  second order (6) to  a (migrating) second 
harmonic proportional to E ,  and a distortion of the basic uniform flow. At third order 
(ei) the fundamental is reproduced. 

The part of (33) representing the perturbation of the basie uniform flow will be 
referred to in the following as the 'free response' of the channel. 

The above premise now allows us to  seek a weakly nonlinear solution in the regime 
defined by (26) and (31) where free and forced bars are assumed to coexist. A natural 
extension of (27) and (33) in this case is of the form: 

+ d[A ( T )  X, El u1 + c.c.] 

+ e([A2E,(u2, C, + uo2) + c.c.] +AJ(u,, C, + uoo)) free response 

+d[X, El uI1(T) + c.c.] + O(&, 

(33) 

U = uniform flow + free response + forced response 

+ vek([AE, e ,  Ul , (n)  +m, el o l l ( n ) ]  + c.c.} 

+ V ~ B ~ [ A E ,  ~ , , ( n )  + c.c.] 

+O(v"d, VB). 

mixed response (34) I 
Similar expansions are assumed for (V ,  H ,  D ,  7g, 7,, Qs,  Q,) (and obviously for a, 8 and 
C). A few comments are needed to clarify the structure of (34). 

The mixed component of (34) arises a t  second order O(v&) from the direct 
interaction between the fundamental free mode (migrating) and the fundamental 
forced mode (steady) giving rise to a migrating component. Further mixed 
interactions lead to reproducing the fundamental free mode at  0(v2ei) .  From the 
work of CST we know that the latter is also reproduced at O(d)  by free interactions 
(see expansion (33)) and indeed this leads to the appearance of secular terms, the 
suppression of which determines the structure of the amplitude equation governing 
the development of the function A(T) .  It follows that, provided e: - v'd or ~f N v,  the 
effect of mixed interactions is felt directly by the amplitude equation. Physically this 
implies that the growth of free bars is influenced strongly by curvature provided the 
amplitude of free bars (O(d)) and forced bars ( O ( v ) )  be comparable. 

Whether the latter effect is going to reinforce or damp the development of free bars 
can only be ascertained by substituting from the expansion (34) into the governing 
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differential problem, solving the differential system obtained a t  various orders and 
deriving the modified structure of the amplitude equation arising a t  O(&, v2&). 

Before outlining this procedure, we point out that the condition & - v for free bar 
growth to be affected by curvature could also be derived within the context of a 
linear stability theory of free bar formation in a curved erodible channel. In  fact, two 
things affect the growth rate of free bars in curved channels close to the critical 
conditions of the straight channel case. The former is the distance from the latter 
conditions : if B is a measure of this distance, the contribution to the growth rate of 
free bars associated with the former effect is O(s) and destabilizing if /3 > /3,. A second 
contribution arises from the modifications of the basic flow with respect to uniform 
straight channel flow. Such modifications can be represented by expanding the basic 
flow in powers of the curvature ratio v. Correspondingly linear free bar perturbations 
of the basic flow would have to be expanded in powers of v. A simple argument would 
then show that an O(v') correction for the growth rate of the fundamental is required 
to prevent the occurrence of secular terms in the O(v2) system for the perturbations. 
The latter contribution to  the growth rate may be destabilizing or stabilizing but 
halance with the former contribution is only possible provided v2 - E ,  i.e. v - & as 
previously found. 

4. Outline of the perturbation procedure 
We now give the differential systems governing the solution a t  various orders. 

Their derivation involves a large amount of tedious algebra. Details of the 
calculations, in particular the expressions for third-order components of (r8, r,, Q,, 
Q,) in terms of components of (U,  V ,  H ,  D) are reported in Appendix B available from 
the Journal of Fluid Mechanics Editorial Office. 

4.1. Free mode 
The differential systems governing the free mode components at U($)  and U ( E )  and 
their solutions are identical with the corresponding ones obtained in CST. We then 
refer the reader to the latter paper. 

4.2 Forced mode 

The differential problem governing the fundamental forced mode a t  O(v)  is very 
close to that obtained by BS ; slight differences arising from some small dispersive 
effects associated with the zero depth average component of transverse velocity 
which was neglected in BS. We then find 

where 

Ll (;) = (3 
V, =R(F:H1-D1), ,-k4 = 0 (n = f l ) ,  

%l %2 %3 %4 

a41 a42 a43 a44 

(35 a d )  
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and the coefiicients afj(i,j = 1,4) and bjl)(j  = 1,4) read : 

a,, = ih, + /3, C, s,, 

a13 = a3, = a34 = ih,, 

aI2 = a2, = aZ4 = a33 = 0, 

a14 = p, C,(s,- l ) ,  

(36a-e) 

( 3 6 f 4  

d 
a23 = a32 = a42 = - dn’  a22 = ih, +p, C,, (36j7n)  

d2 d2 
dn dn2 

a4, = ih,f,, a43 = -FiR,, a44 = ih,f,+R-, (36 n - P )  

bil)  = -nPc C,, bil) = 1 - ih, k, -/3, C, k,, b r )  = bil) = 0. (36rl-t) 

In  (36a-t) the following notations have been employed: 

s1 = 2(1 -cT)-l, s2 = CD( l  - cT)-l, (37a, b )  

with 

B,, C, and @, being Shields parameter, friction coefficient and bed load function of 
unperturbed uniform flow. 

The solution of (35a-f) can readily be obtained in closed form as described in BS. 
(Notice that in the latter paper an algebraic error was contained in equation ( 3 9 4  
which was corrected in Blondeaux & Seminara 1988). 

0 ( v 2 )  
The differential system governing the second harmonic of the forced mode reads 

(39 a d )  

while the distortion of the basic flow is obtained as the solution of the following 
system 

(40 a-d) 

V, = R ( F ~ H o - D o ) , n - Q ~ o  = 0 (n = 1)’ (40e,f) 

[U, +Do+ (U1& +c.c.)] dn = 0, (PiH,-D, )dn = 0, (409, h) 
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where L,(j = 0 , j  = 2) is a linear differential operator obtained from L, by replacing 
A, with (jh,) and the coefficients bj2)(n) and bj0)(n) ( j  = 1,4) read : 

Notice that the following decompositions have been employed for the O( v2) 
components of r,/Co, rn/Co, &,/Go and Q n / G O :  

(42 h,) 

where the dashed quantities are expressed in terms of products of first-order forced 
perturbations and are reported in Appendix A. 

4.3. Mixed mode 

At O(u&) mixed interactions give rise to 11 components satisfying the following 
differential system 

0 

Lll 

Qo @o 

V,, = B(F~Hl l -Dl l ) -Q~l l  = 0 (n = f l ) ,  (43e, f )  
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where L,, is a diff'erential operator obtained from L, by replacing A, with (A, + A,) 
and the coefficients b;ll)(n) read : 

b(l1) 1 
= - i(A, + A,) U, u1 S,  - ( U,, + 1) o, C, - in  V, v1 C, 

- W1(2u1+ dl) c, -P, c, Till 

- P c ~ 0 [ ~ , ( 2 d , - ~ s 1 ) - ~ 1  d,+%-d1)lS1, (44a) 

bpi) = - ih, V, u, 8, - ih, U ,  v1 C, - Vl, zil C, 

+$y zil 8, - k,[ -nvl + iA,(2u, +d,) +2iA, ul]X, 

-ninxh,Cl+2u, ~,-~c(Io[T6,,+t,,(n-D,)C,-T,,d,S,], (44b) 

b y  = - i ( h  +A,) P i  u1+ c'1d1) 8 1  - (  V1,aSl +inK Ci) 4 

i ( h m  + A c )  Q:11-%11, n +ni& Qsl Sl-q-1 C1. 
b y )  = - 

+ r a . ( ~ , + n , ~ , - ( ~ , , n + l , C 1 l ~ l ,  (44c) 

( 4 4 4  

Moreover decompositions similar to (42a-h) have been employed for the O(vsi) 1-1 
components of bottom stresses and bed-load components as follows : 

Tsll = $1 ~ 1 1 + ~ 2 4 1 + ~ : 1 1 ~  (45a) 

Tn11 = V,,+ Gl,, (45b) 

Qs11 =f1 ~ l l + f 2 ~ l l + Q : l l ~  (45c) 

where the dashed quantities are again reported in Appendix A. 
The differential problem for ,, components of the solution is obtained from 

(43u-f), ( 4 4 4  and ( 4 5 ~ 4 )  by replacing (iAc, iw,) with ( -iAc, -iwc) and the 
coefficients of the O($) fundamental free mode (ul,vl, . . . . , q,,) with their complex 
conjugates. 

The differential problems (35), (39), (43) and the one governing the 11 components 
have been solved both analytically (details of the solutions given in Appendix B) and 
numerically using a fourth-order Runge-Kutta scheme. Analytical and numerical 
solutions were found to agree up to the 7th significant figure. 

O(& v2c.t) 

If we set 

with ki an O(1) parameter, the differential system obtained for the O(d)  free 
fundamental mode reproduced by free interactions is also affected by O(v2 &) mixed 
interactions, as discussed above, through non-homogeneous terms which are 
proportional to k;A( 5"). Under these conditions we find the following linear system 
for ( u l l > ~ l l ,  hll,dll) 

0 A2Jp1+A(p2+ kip:) 
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FIGURE 5. The real part of the coefficient a, of the amplitude equation (49) is plotted versus 8, 
for some values of the grain ratio d,. 

4 

where L is the linear algebraic operator governing the fundamental free mode which 
is obtained from L, by replacing A, with A,, (dldn) by (-in) everywhere but in a23 
where (dldn) is replaced by (in) and (dz/dn2) by (-in2). The quantities p1-9 are 
determined by free interactions and are identical with those derived in CST (see 
equation (50)), whereas the quantities p i ,  p i ,  p i ,  p t  are lengthy algebraic expressions 
involving the first- and seoond-order free, forced and mixed components of the flow 
and bottom perturbation. They are given in detail in Appendix B. 

For the system (47) solvability is ensured provided the following condition be 
satisfied : 

I 

Equation (48) is readily found to reduce to the following nonlinear ordinary 
differential equation for the amplitude function A(T) : 

(49) 
dA -+ (a, + kt a , , )A + a2 A2X = 0, 
dT 

where a, and az are complex coefficients identical with those obtained in CST (see 
equation (52)) while a,, is the coefficient associated with the effect of mixed 
interactions analysed in the present contribution. Each of the above coefficients is a 
function of the unperturbed Shields stress B0 and of the grain ratio d,. The coefficient 
all is also a function of the meander wavenumber A,. Plots for Re (al) and Re (az) 
are given in figures 5 and 6, while Re (a,,) is expressed below (see equation (50))  in 
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FIQURE 6. The real part of the coefficient a2 of the amplitude equation (49) is plotted versus Oo 
for some values of the grain ratio d,. 

0 0  

terms of the critical value of k, for free bar suppression which is plotted in figure 9 
for typical values of 8,, d, and A,/Ac. 

5. Critical curvature for free bar suppression 
Equation (49) is of Landau-Stuart type and exhibits some important features. 
Firstly as k, --f 0 we recover the amplitude equation derived in CST for the straight 

channel case. 
For finite k,, equation (49) allows for supercritical equilibrium amplitude solutions 

as T +  00 provided Re (a1 + k,2 all)/Re (az) be negative. Thus curvature affects the 
existence of free bars : indeed in CST Re @,)/Re (a2) was always found to be negative 
whence, in order for curvature to tend to suppress alternate bars, we expect that 
sgn [Re (al l )]  =k sgn [Re (a1)]. Under the latter conditions Re (a1 + k,2 all)  changes sign 
for some critical value kcl of k, defined as 

For values of A,/A, such that a critical value kCl defined as in (50) exists the critical 
value vcl of the curvature ratio able to suppress free bars is given by the following 
relationship 

vc1 = kc1 (bjcbc):. - (51) 

Physically equation (51) simply states that the larger the amplitude of free bars the 
more sinuous the channel should be in order to suppress them. The dependence of vC1 
on p predicted by formula (51) is fairly strong but could not be detected by KM who 
designed their experiments such that /3 was held constant. Also notice that kcl is in 
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general a function of the unperturbed Shields parameters 8,, the grain roughness d,  
and the meander wavenumber A,. 

The second important feature of equation (49) concerns the behaviour of the speed 
of free bars as k,  increases. In  fact, a t  equilibrium, we can write 

A ,  = IA,I exp (i&T), 

6 = Im (al) + ki Im (al l )  + IAJ2 Im (a2), 

(52) 

(53) with 

whence the dimensionless wavespeed C, of free bars is affected by curvature 
according to the following relationship : 

c, = A,( -wo,+E6)  = A&, + u'wz), (54) 

where the expressions for w1 and w2 are readily derived using (46), (53) and (54). Thus 
curvature will slow down or speed up the propagation of free bars depending on w:, 
being negative or positive. If the former condition is found to occur (54) allows us to 
define a second critical value of the curvature ratio u,* as the value of u such that C ,  
vanishes. We find 

where uC2 will again be a function of O,, d,, A, and /3. 
Thus the following regimes appear to be possible: 
(i) If uC1 < uc2 free bars are damped and slowed down for u < ucl and are 

(ii) If uC1 > u C z :  
suppressed for u > uC1. 

free bars are damped, slowed down but migrate downstream for u < uC2 ; 
free bars are damped and migrate upstream (though possibly a t  a very low rate) for 

V,2 < < vc1; 

free bars are suppressed for u > uC1. 
Let us then come to KM's experimental observations. Some quantitative 

comparison between our theoretical predictions of the critical values k,, ( 2 u c l / ~ i )  
and k c 2 ( =  uc2/e$ and experimental data is pursued in figures 7 ( a )  and 7 ( b )  
respectively . 

Before commenting on the above comparison it is necessary to state the procedure 
employed to perform it. I n  the calculations, the values of B0, d ,  and p given in KM 
for each experiment were used assuming the relative density of coal to be 1.5, the 
initial bottom configuration to be plane and finally evaluating ue1 and uC2 (given by 
(51) and (55)  respectively) as functions of A,. The corresponding critical values acl 
and a,' of the angle between straight segments of KM's channel were associated with 
vC1 and uC2 respectively using the relationships : 

u = &A; tan ($a), A, = A;[l -(an tan (;a))'+ O(tan' (fa))], (56a, b)  

where A& is the experimental KM's value of the dimensionless meander wavenumber 
in Cartesian coordinates. Notice that (56a)  is obtained by modelling KM's sequence 
of straight segments by a sequence of meanders, the centreline of which is given in 
Cartesian coordinates by a sinusoid with maximum curvature and intrinsic 
wavenumber respectively equal to those characteristic of the equivalent 'sine 
generated curve ' adopted in the theoretical model. However the sinusoidal model of 
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FIQURE 4. The parameters Pk,, P2k,, P'k,, Pk4, are plotted versus the grain ratio d, for given values 
of the meander wavenumber A,(! = 30). -, A,  = 0;  ------, A,  = 0.2; -.-, A, = 0.4; ---, 
A, = 0.6; (a )  -, Kalkwijk &, de Vriend (1980); (d) -, Engelund (1974). 

FIQURE 4. The parameters Pk,, P2k,, P'k,, Pk4, are plotted versus the grain ratio d, for given values 
of the meander wavenumber A,(! = 30). -, A,  = 0;  ------, A,  = 0.2; -.-, A, = 0.4; ---, 
A, = 0.6; (a )  -, Kalkwijk &, de Vriend (1980); (d) -, Engelund (1974). 
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FIGURE 9. The critical value k,, is plotted versus A,/Ac for given values of‘ d,  and 8,: 

(a )  0, = 0.1 ; ( b )  a, = 0.02. 

KM’s configuration and the ‘sine generated’ model differ between each other by 
quantities O[tan2 (+a)]. Both of them are anyhow only approximate representations 
of KM’s configuration. 

Sensitivity of theoretical predictions to the choice of the empirical coefficient r of 
equation (22) is also shown in figure 7. 

Various observations arise from figure 7. The signs of Re(a,,) and Im(a,,) are 
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FIGURE 10. The critical bar wavenumber A, is plotted versus Oo for some values of the grain 
ratio d,. 

found to  be such that critical values uC1 and u,, exist in a wide range of values of 
A,/A, including those corresponding to KM’s experiments. The distribution of acl 
and aC2 are very close to each other and both exhibit a trend which appears to be in 
fairly good agreement with experimental observations. The criterion employed by 
KM to define a, was to ascertain ‘whether an initially formed bar train could migrate 
more than one wavelength downstream ’. However the boundary between the 
‘ migrating ’ and ‘non-migrating ’ regimes was unclear : ‘ I t  was sometimes observed 
that clearly visible bar fronts would be unable to migrate more than one wavelength 
downstream and would tend to vanish.. . , but that nevertheless the point of deepest 
scour along the bank would subsequently be subject to oscillations in elevation that 
would not fade in time.’ 

The precise mechanism operating a t  the transitional regime can only be ascertained 
through detailed experimental observations as KM themselves pointed out. However 
the agreement exhibited by figures 7 ( a )  and 7 ( b )  appears to strongly support the 
correctness of the physical ideas underlying the present investigation. 

From figure 7 it appears that there are ranges of values of A, such that uCp < uC1. 
Thus it should be possible to  perform an experiment in these ranges where bars 
migrating upstream should be observed. However we point out that this regime 
appears to be associated with fairly large values of a such that the perturbation 
expansion employed herein might only be qualitatively valid. Thus the actual 
existence of this regime needs to be verified experimentally or by means of strongly 
nonlinear (possibly numerical) analyses. 

Figure 7 also shows that the curves a,,(A,) and ac2(Am) have a minimum. This 
feature is of great conceptual and practical interest. In fact figure 8, which shows the 
dependence of the fundamental forced component of bottom elevation as a function 
of A,, clearly suggests that the minimum values of aC1 and a,, are attained within 
the resonant wavenumber range of BS. This was not unexpected: indeed close to 
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FIGURE I 1  (a-c). For caption see facing page 
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FIQURE 11. A three-dimensional view of bottom configuration is given showing pure free bars for 
v = 0 [ (a)  w,t = 0;  ( b )  w e t  =in], free bars coexisting with forced bars for v = #vcl [ ( c )  w,t = 0;  
(d )  w,t = $t] and free bars suppression for Y = vcl ( e ) .  /3 = 20, 8, = 0.1, d,  = 0.01, A,,,/Ac = f. 

resonance the forced bar exhibits a peak which implies that lower sinuosities are 
sufficient to damp free bars. Practically this suggests that, when a channel is 
artificially corrected the formation of free (migrating) bars might be prevented by 
giving the channel a relatively small sinuosity and choosing the wavenumber within 
the resonant range. There is obviously a price to pay for free bar suppression: the 
amplitude of forced bars is relatively large, with obvious implications regarding the 
use and management of the channel. However in the absence of free bars, under 
steady flow conditions, forced bars are steady, which is favourable for channel 
control. 

Incidentally KM's results also exhibit a minimum for a value of the wavenumber 
close to that theoretically predicted : this might be taken as an indirect demonst'ration 
that resonance is experimentally observed. 

6 F1.N 111 
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The last noticeable feature of figure 7 is the behaviour of a,, and a,, as A,  + 0. It 
appears that free bars are enhanced by curvature if meanders are long enough. This 
result conforms to the field observations of Kinoshita (1961) who noticed that in 
tortuous bends several alternate bars may be superimposed over a primary point bar. 

The above findings are confirmed for different values of 8, and d, as shown in figure 
9 where k,, is plotted as a function of the ratio of the meander wavenumber A, to 
the bar wavenumber A,. The latter, along with formula (51), figure 6 of CST plotting 
the critical width ratio for free bar formation P,(e,;d,) and figure 10 plotting the 
critical bar wavenumber A,(8,;d,), allows one to determine the critical value of the 
curvature ratio for free bar suppression provided 8, and d, are given such that the 
unperturbed bottom configuration be plane. Figure 9 also shows the existence of a 
second minimum in the curve k,,(A,/A,) which occurs for values of A,/A, close to 1.  
This feature is vaguely reminiscent of a spatially synchronous Mathieu-type 
response, though the migrating character of part of the perturbation further 
complicates here the characteristics of the process. The second minimum disappears 
as 8, and/or d, increase. This explains why it  was not revealed by KM’s experiments. 

Finally, figure 11 gives a pictorial three-dimensional description of the process of 
interaction between free and forced bars in meandering channels as it emerges from 
the present theory. These pictures allows one to follow the progressive slowing down 
and suppression of free bars as the curvature ratio of the channel v increases from 0 
up to vcl, for given values of p ,  8,, d, and A,. Figures 11 (a) and 11 (b) show free bars 
migrating in a straight channel (v = 0) a t  t = 0 and t = $T/w,  respectively: the 
wavespeed of bars may be estimated by comparing the two plots. When 0 < v < v,, 
migrating free bars and steady forced bars may coexist and the amplitude and 
wavespeed of free bars decrease with respect to the straight case: this is shown in 
figures 1 1  (c)-11 (d) where v = 4vcl and the same time interval between the two plots 
as in figures 11 (a) and l l ( b )  is used. Finally figure l l ( e )  shows the steady bed 
topography which appears when free migrating bars arc suppressed ( v  = v,,). 

6. Conclusions 
The theoretical framework built in the present contribution appears to draw a 

picture of the process of free-forced bar interactions which is consistent with various 
experimental and field observations. 

Meander development is described in figure 9 by curves starting from the 
horizontal axis a t  some value of the ratio A J A ,  (typically 0.3-0.4) and characterized 
by values of the latter ratio progressively decreasing as the intrinsic meander 
wavelength and the curvature ratio increase. It follows that, in the course of meander 
development, our theory predicts coexistence of free and forced bars for relatively 
low values of u (as indicated by KM’s and Gottlieb’s (1976) observations), free bar 
suppression when v(A,) exceeds vcl(A,) (in accordance with KM’s results), 
reappearance of free bars when A, has become small enough for vfh,) to be again 
smaller than v,,(A,) (in agreement with Kinoshita’s (1961) field observations of 
‘tortuous ’ meanders). 

Results have been presented only for the case when the unperturbed configuration 
is plane. The present theory is perfectly equipped to deal with the dune case if the 
presence of dunes is simply accounted for in terms of its effect on the friction 
coefficient and the bed load function. However, dunes are likely to interact with 
secondary flow induced by bars so as to affect the dynamics of transverse sediment 
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transport in a manner which has never been thoroughly analysed. Further 
experimental and theoretical work is needed. 

Other features which may play a role in the process investigated in the present 
contribution are the effect of transport in suspension, grain sorting, entrance and 
wall effects, unsteadiness. 

An extension of the present theory to account for strongly nonlinear effects (p  % /I,, 
v - O(1)) appears to be feasible though it is likely to require a fairly heavy 
numerical approach. As has already been pointed out, such an extension does not 
seem to be necessary for forced bars as suppression of free bars appears to occur for 
fairly low values of v.  In order to model strongly nonlinear free bars it does not seem 
to be appropriate to extend the present weakly nonlinear perturbation technique. 
Rather i t  might be possible to formulate a still two-dimensional model able to fit 
oblique bottom discontinuities to represent the sharp bar fronts occurring in reality. 

Finally the perturbation expansion employed herein breaks down for values of p 
and A, close to the resonant peaks where the forced response can no longer be 
represented by a straightforward expansion in integer powers of v .  Overcoming this 
limitation would require that a nonlinear theory of resonance be preliminarily 
formulated. 

This work was supported by MPI-Project of National Relevance 'Fenomeni di 
Trasporto solido '. Preliminary versions of the present results were presented a t  
Euromech 215 (S. Margherita Ligure, Genoa, September 1987) and at the joint 
US-Japan final meeting on River Meandering (Kauai Island, October 1987). 

Appendix A 
We report the expressions derived for second-order components of r8/Co, rn/Co,  

Q8/Qo,  Q,/Qo in terms of products of first-order quantities. 
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